18 research outputs found

    Cell migration through 3D confining pores: speed accelerations by deformation and recoil of the nucleus

    Get PDF
    Directional cell migration in dense three-dimensional (3D) environments critically depends upon shape adaptation and is impeded depending on the size and rigidity of the nucleus. Accordingly, the nucleus is primarily understood as a physical obstacle, however, its pro-migratory functions by step-wise deformation and reshaping remain unclear. Using atomic force spectroscopy, timelapse fluorescence microscopy and shape change analysis tools, we determined nuclear size, deformability, morphology and shape change of HT1080 fibrosarcoma cells expressing the Fucci cell cycle indicator or being pre-treated with chromatin-decondensating agent TSA. We show oscillating peak accelerations during migration through 3D collagen matrices and microdevices that occur during shape reversion of deformed nuclei (recoil), and increase with confinement. During G1 cell cycle phase, nucleus stiffness was increased and yielded further increased speed fluctuations together with sustained cell migration rates in confinement as compared to interphase populations, or to periods of intrinsic nuclear softening in the S/G2 cell cycle phase. Likewise, nuclear softening by pharmacological chromatin decondensation or after lamin A/C depletion reduced peak oscillations in confinement. In conclusion, deformation and recoil of the stiff nucleus contributes to saltatory locomotion in dense tissues

    Biophysical Characterization of CD6—TCR/CD3 Interplay in T Cells

    Get PDF
    Activation of the T cell receptor (TCR) on the T cell through ligation with antigen-MHC complex of an antigen-presenting cell (APC) is an essential process in the activation of T cells and induction of the subsequent adaptive immune response. Upon activation, the TCR, together with its associated co-receptor CD3 complex, assembles in signaling microclusters that are transported to the center of the organizational structure at the T cell-APC interface termed the immunological synapse (IS). During IS formation, local cell surface receptors and associated intracellular molecules are reorganized, ultimately creating the typical bull's eye-shaped pattern of the IS. CD6 is a surface glycoprotein receptor, which has been previously shown to associate with CD3 and co-localize to the center of the IS in static conditions or stable T cell-APC contacts. In this study, we report the use of different experimental set-ups analyzed with microscopy techniques to study the dynamics and stability of CD6-TCR/CD3 interaction dynamics and stability during IS formation in more detail. We exploited antibody spots, created with microcontact printing, and antibody-coated beads, and could demonstrate that CD6 and the TCR/CD3 complex co-localize and are recruited into a stimulatory cluster on the cell surface of T cells. Furthermore, we demonstrate, for the first time, that CD6 forms microclusters co-localizing with TCR/CD3 microclusters during IS formation on supported lipid bilayers. These co-localizing CD6 and TCR/CD3 microclusters are both radially transported toward the center of the IS formed in T cells, in an actin polymerization-dependent manner. Overall, our findings further substantiate the role of CD6 during IS formation and provide novel insight into the dynamic properties of this CD6-TCR/CD3 complex interplay. From a methodological point of view, the biophysical approaches used to characterize these receptors are complementary and amenable for investigation of the dynamic interactions of other membrane receptors

    Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes

    Get PDF
    Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E2 (PGE2). Whereas the effects of physico-chemical and topographical cues have been extensively studied on FAs, little is known about how podosomes respond to these signals. Here, we show that, unlike for FAs, podosome formation is not controlled by substrate physico-chemical properties. We demonstrate that cell adhesion is the only prerequisite for podosome formation and that substrate availability dictates podosome density. Interestingly, we show that DCs sense 3-dimensional (3-D) geometry by aligning podosomes along the edges of 3-D micropatterned surfaces. Finally, whereas on a 2-dimensional (2-D) surface PGE2 causes a rapid increase in activated RhoA levels leading to fast podosome dissolution, 3-D geometric cues prevent PGE2-mediated RhoA activation resulting in impaired podosome dissolution even after prolonged stimulation. Our findings indicate that 2-D and 3-D geometric cues control the spatial organization of podosomes. More importantly, our studies demonstrate the importance of substrate dimensionality in regulating podosome dissolution and suggest that substrate dimensionality plays an important role in controlling DC activation, a key process in initiating immune responses

    Dynamic coupling of ALCAM to the actin cortex strengthens cell adhesion to CD6

    Get PDF
    At the immunological synapse, the activated leukocyte cell adhesion molecule (ALCAM) on a dendritic cell (DC) and CD6 molecules on a T cell contribute to sustained DC–T-cell contacts. However, little is known about how ALCAM–CD6 bonds resist and adapt to mechanical stress. Here, we combine single-cell force spectroscopy (SCFS) with total-internal reflection fluorescence microscopy to examine ALCAM–CD6-mediated cell adhesion. The combination of cells expressing ALCAM constructs with certain cytoplasmic tail mutations and improved SCFS analysis processes reveal that the affinity of ALCAM–CD6 bonds is not influenced by the linking of the intracellular domains of ALCAM to the actin cortex. By contrast, the recruitment of ALCAM to adhesion sites and the propensity of ALCAM to anchor plasma membrane tethers depend on actin cytoskeletal interactions. Furthermore, linking ALCAM to the actin cortex through adaptor proteins stiffens the cortex and strengthens cell adhesion. We propose a framework for how ALCAMs contribute to DC–T-cell adhesion, stabilize DC–T-cell contacts and form a mechanical link between CD6 and the actin cortex to strengthen cell adhesion at the immunological synaps

    Nanometer-grooved topography stimulates trabecular bone regeneration around a concave implant in a rat femoral medulla model

    Get PDF
    Abstract In the present study, a method was developed to reproduce two nanogrooved patterns (groove width/ridge width/depth: 150/150/50 nm and 200/800/70 nm) into cylindrical epoxy resin implants, which were subsequently coated with 20 nm of titanium. Also, implants with a conventional surface roughness (Rq = 1.6 μm) were produced. After cytocompatibility analysis of the produced surfaces, implants were installed into the femoral condyle of rats for 4 and 8 weeks. The histomorphometrical analysis of bone volume in a 100 μm wide zone close to the implant surface showed that only for the 200/800 grooves the amount of bone increased significantly between 4 and 8 weeks of implantation. In addition, at the late time point only implants with the 200/800 pattern revealed a significantly higher bone volume compared to the rough controls. In conclusion, the 200/800 grooved pattern can positively influence bone volume adjacent to the implant surface, and should be evaluated and optimized in further (pre-)clinical studies
    corecore